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Abstract. Ab initio DFT electronic structure calculations involve an
iterative process to solve the Kohn-Sham equations for an Hamiltonian
depending on the electronic density. We discretize these equations on
a grid by finite differences. Trial eigenfunctions are improved at each
step of the algorithm using multigrid techniques to efficiently reduce
the error at all length scale, until self-consistency is achieved. In this
paper we focus on an iterative eigensolver based on the idea of inexact
inverse iteration, using multigrid as a preconditioner. We also discuss
how this technique can be used for electrons described by general non-
orthogonal wave functions, and how that leads to a linear scaling with
the system size for the computational cost of the most expensive parts
of the algorithm.

1 Introduction

The computational power of present supercomputers allows larger and larger calcula-
tions in quantum physics and chemistry. At the same time some applications require
a very high accuracy, leading to new scientific computing challenges: computing hun-
dreds of eigenfunctions of Hamiltonians discretized in subspaces of dimension of the
order 108. For example, an accurate description of a carbon nanotube composed of 160
atoms by the finite difference method requires 320 eigenfunctions on a grid composed
of at least 250000 nodes.

Such calculations are actually possible thanks to the density functional theory
(DFT) [1, 2, 3]. In DFT, the electrons are represented by independent orthonormal
eigenfunctions Cj associated with the N lowest eigenvalues, q < ... < eN, of the
Kohn-Sham equations:

2 + = jCj(x),
N

p(x) = E f(cJ)lCJ(X)12’

j=l

fa¢~(x)¢j(x)dx= 5~j, 1 < i,j < N,
(1)

= ?- + v’[p] +
-V2VH = 47cp,

in a domain 12, with periodic or homogeneous Dirichlet boundary conditions. The
function f defines the occupation of each orbital which can vary from 0 to 2. Here we
neglect the spin. This allows us to deal only with half the number of electronic states.



The potential operator l)[p] depends on the electronic wave functions through the
electronic density p. It is composed of three terms. The first one, 1)-ps, is the pseudopo-
tential operator. It represents the effect of the atomic nuclei and core electrons on the
valence electrons[4]. It means that only the valence electrons have to be described by
the functions Cj, the other ones being included in the core. l) ps is a sum of contributions
from every atom in the system. For each atom c~, the pseudopotential l)g 8 is defined
by its action on a wave function ¢,

8----1

Values for ~ depend on the species of the atom (0 for Hydrogen, 1 for Carbon, 
for Aluminium for example). The functions ~,8 are radial and centered on the atoms.
Though non-local, this operator preserves the sparsity of the Hamiltonian matrix in the
calculation thanks to the short range of the functions ~,s (~ 3[bohr] for Carbon for
instance). Note also that the functions v~ are smooth and -- unlike the true Coulomb
potentials -- do not have singularities on the center of the atoms.

The second term, the Hartree potential VH[p], represents the Coulomb interaction
between valence electrons. The last component of the potential, Vxc, describes --
perfectly in principle -- the exchange and correlation interaction between electrons. In
practice, this term has to be approximated by a simplified model. Here we use the
standard local density approximation (LDA)[5, 6].

A good way to discretize the Kohn-Sham equations is to describe the electronic
orbitals and the potentials by their values on a uniform grid (number of nodes >>
N). The Laplacian operator is then approximated by finite differences (FD). Such
an approach is particularly convenient for massively parallel implementations based
on spatial domain decomposition [7]. It is also appropriate to implement local mesh
refinements [8, 9, 10]. More recently, we have shown that it also allows to impose spatial
localization constraints on the orbitals defined on the grid [11]. This essentially reduces
the scaling of the calculation to O(N) operations, the main goal of several algorithms
developed recently (for recent reviews, see [12, 13]). Such an approach combines ab initio
accuracy and scaling in an efficient way. Note that compared to the Finite Elements
(FE) method, for a same accuracy, FD is in general cheaper on a uniform grid.

The fine mesh spacing used in practical calculations is very important to obtain ac-
curate results. However, this represents a large number of degrees of freedom compared
to the number of wave functions to compute. That also means a large condition num-
ber for the discretized Hamiltonian and thus requires an appropriate preconditioning
to keep good convergence rates in the iterative eigensolver, with or without localization
constraints on the orbitals.

After describing the basics of an inverse iteration method for the search of several
eigenvalues in Section 2, we present in Section 3 a multigrid preconditioner that we use
in an inexact inverse iteration for solving the KS equations. In Section 4, we discuss how
such a linear preconditioner can be used along with non-orthogonal localized orbitals
to obtain a linear scaling of the calculations.

2 Iterative eigensolver

The Kohn-Sham equations discretized by FD result in a huge 3D eigenvalue problem.
Fortunately, the matrices involved are very sparse. Lanczos or Arnoldi based methods
are very popular for large-scale eigenvalue problems with sparse matrices [14]. However
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several features of DFT electronic structure calculations make these techniques not very
suitable. First of all, a large number of eigenfunctions is in general required, making
Krylov subspace expansions and deflation techniques very expensive. Secondly, for a
self-consistent Hamiltonian, it is not useful to solve precisely the eigenvalue problem at
each iteration. Cheap corrections in an appropriate direction are in general sufficient,
and small variations of the Hamiltonian between self-consistent (SC) steps allow us 
use the last computed wave functions as good initial approximations for the next step.

The Rayleigh Quotient Iteration (RQI) is a very fast algorithm to compute one
eigenvalue of a matrix (see Ref. [15] for example). Here we describe this method in 
different form that we find more suitable for matrices of size too large to make use of
direct linear solvers. Starting from an approximate eigenpair (e(k), @k)) of a discretized
Hamiltonian H, e(k) given by the Rayleigh Quotient of ¢(k) at step k, we look for 
better approximation ¢(k+1). Specifically, we write

where the correction 6~(k) is chosen orthogonal to ~(k). ~ is a normalization factor.
Improving ¢(k) by RQI requires then to find (k) L ¢(k) and ~ such th

(H + 5¢(k)) 

We eliminate ~ by projecting the whole equation onto (¢(k))± and then rewrite it 

(I - ~(k)(~(k))T) (k>) 6~(k) = - (H- (k)) %0(k).

By the properties of the Rayleigh Quotient, the projector on the right hand side of
the equation has been omitted. Note that in the Jacobi-Davidson method [16] the
corrections are based on approximate solutions of the same equation.

This algorithm can be generalized for the simultaneous search of N eigenfunctions,
with possible degeneracy of some eigenvalues [17, 18]. The idea is to replace the Rayleigh
quotient by the Rayleigh-Ritz procedure [15] and to look for corrections orthogonal to
the whole subspace 9(k, of trial eigenfunctions. Denoting 9(k): (,~k),..., @Nk)]as a

%

matrix made of columns %bJk), we write the iterative algorithm:

1. Let 9(o) be a trial subspace of dimension N.

2. For k = 0,1,2,..., do:

(a) Rayleigh-Ritz (RR) for H in the subspace ,(k) --+ (e~.k), %b]k)), j = 1,...,N

(b) For j = 1,..., N, compute k) _1_ ~(k) solution of

(I - 9(k)9(k)T) (H - .(k)~o,.(k) -(H = tj )’~j 

(c) Define ¢(k+1) span{%b~k) + 6%b~k),...,¢~) + 6%b~)}.

If we solve exactly Eq.(2), we obtain a locally quadratic convergence rate close 
the solution of the eigenvalue problem for non self-consistent Hamiltonians [18]. For
self-consistent calculations, we update the potential V[p] at the end of the RR procedure
by taking a mixing of the potential at step k - 1 with the one computed from the new
density p(k).



3 Multigrid preconditioning

One can actually apply the algorithm of the previous section by solving the linear
systems by multigrid [10]. But here we would like to show how one can replace the
expensive solution of the linear system by a cheap and efficient preconditioner. The
main advantage of this second approach is that it actually does not depend on j and
works in any basis one can choose for the trial subspace ~(k).

Looking at the correction equation (2), we note that the right hand side is the
steepest descent direction for the minimization problem with orthonormality constraints

associated with the eigenvalue problem (1). We note it (-r~k)), k) being the residual
of the eigenvalue problem.

From the point of view of the inverse iteration method, the "optimal" correction is
given by

~Ck), i ,-i Ck)5¢~k)= -((I- qflk)qflk)T)(H-- .3 ) ~(k)±) 

Thus we want to construct a preconditioner M which is a good approximation of the
operator

If we have a close look at the Hamiltonian operator, we notice that for high energy
states, the Laplacian is the dominant part, and the corresponding eigenfunctions are
essentially similar to those of the Laplacian (Fig. 1) perturbed by a relatively weak

1 2potential. It means that -TV is a good approximation of (H - e~.k)) in ~(k)l for
1 _< j < N, so that one can choose

M ~ (I-

Preconditioners based on a similar idea have been developed for calculations in
plane-wave bases [19, 20, 21]. Since the basis functions are then eigenfunctions of the
Laplacian operator, it is easy do design such a preconditioner.

In real-space, one can associate frequencies with grid resolution. Applying a single
grid iterative method -- like Jacobi or Gauss-Seidel -- to solve a Poisson problem, one
essentially obtains the high frequency components of the solution, the one that we can-
not represent on a coarser grid. Using multigrid V-cycles based on such a "smoother",
we can solve the problem for components of lower frequencies by visiting coarser grids
[22]. Furthermore, by choosing a limited number of grids, one can "select" the compo-
nents that we want to solve for. Following this argument, we define the application of
our preconditioner M-1 to r~k) as an iterative multigrid solver for the Poisson problem

1 V25~b(k) _rJ.k)
Tj ----

limited to the grids with a number of nodes larger than 8N. We start with an initial
trial solution

5¢~.k) _ai [ ~ rm+2rm+l it-l~.(k)..... rn+l~rn+2 "’" ~ ~j ¯ (3)
Its main goal is to introduce some low frequency components in the correction. 1~
denotes an interpolation from the grid m to the grid n [22]. We use the notation
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Figure 1: Preconditioning based on similarities between Hamiltonian and Laplacian operators
for eigenfunctions associated with large eigenvalues.

for the finest grid and m < g for the coarsest grid in the V-cycle. The coefficient a is
defined by looking at Eq.(3) as the steepest descent correction one would make if the

2whole calculation was done on the grid m - 1, so that we choose a N h,,~_~. Here h,~-,
is the mesh spacing on the grid m - 1. As a smoother we choose the Jacobi method
because of its inherent parallelism.

Note that since (-r5k)) is the steepest descent direction,

can be seen as a preconditioned steepest descent direction.
In Figure 2, we present the convergence history of the error on the energy for var-

ious discretization grids for an 8 atoms diamond cell self-consistent calculation. We
use the multigrid preconditioner described above, doing for each correction 5¢~k) and
at each SC iteration 1 V-cycle with 2 pre-smoothing and 2 post-smoothing. The grid-
independence of the convergence rate is observed. All the calculations use the same
coarsest grid 6 x 6 x 6 for the multigrid preconditioning, and the same total number of
states (occupied+unoccupied=24). The presence of unoccupied states is important 
have a subspace ̄(k)± in which the Laplacian is a good approximation of the Hamilto-
nian.

More numerical results and applications based on this method can be found in
Ref.[11]. In the context of the Jacobi-Davidson method, a multigrid preconditioner has
also been used to obtain grid-independent convergence rates on a simpler problem[23].
Note that in general, multigrid methods appear to be an essential component for large-
scale electronic structure calculations in real-space (see Ref. [7, 10, 11, 24, 25]).

4 Linear scaling

The preconditioner described above is linear. It means that one can use it in a similar
way for any basis of the subspace ~(k). For example in a basis of orthogonal functions
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Figure 2: Convergence rate for a diamond cell calculation (8 atoms) for various discretization
grids.

(I) = (¢1,..., CN) related to ¯ by the transformation ~U = ~ where U is an N 
orthogonal matrix. Or for a basis of non-orthogonal functions X = (X1,- ¯., XN), where
we have X = ’I)GT- Here G is a lower triangular N x N matrix resulting from the
Cholesky decomposition of S = ~T¢~. All these representations are mathematically
equivalent since only the subspace spanned by these bases is important. Any algorithm
expressed in a given basis can be simply expressed in another one by using the matrices
U and G. We note that the evaluation of the electronic density is cheaper in the basis
of the Ritz functions. With orthogonal functions, one also avoids problems related to
a possibly ill-conditioned overlap matrix S. However, using non-orthogonal functions
allows to impose localization constraints. Functions ¢i are allowed to be non-zero only
inside spheres of radius Rc centered on the atoms for example. As shown in Ref.[11], if
these constraints are not too strong -- meaning if the localization radius of the orbitals
is not too small -- one obtains the same results one would get without localization
within the desired accuracy. The computational cost for correcting the non-orthogonal
functions, as well as for computing the electronic density p scales then linearly with the
size of the system. There remains some O(N3) operations on N x N matrices, but not
significant for calculations with N as large as 3000 [11].

The method described above can also be seen as a generalization of ab initio methods
using LCAO (linear combination of atomic orbitals) or Gaussian basis functions:

i

Here the local basis functions ¢i are defined by their values on a grid and are
variationally optimized. These non-orthogonal orbitals described on a grid have much
more degrees of freedom than atomic orbitals or Gaussians. Their accuracy can be
systematically increased by mesh refinement or expansion of the localization domains.
Since the number of orbitals per atom is somewhat minimal in this approach, the cost
for the O(N3) part of the calculation remains small, at least for the size of the systems
one can compute today. As shown in Ref.[ll], this method allows accurate ab initio
calculations with hundreds of atoms.
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